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The growth of small disturbances in a two-dimensional incompressible wake has 
been investigated theoretically and experimentally. The theoretical analysis is 
based upon inviscid stability theory wherein small disturbances are considered 
from both temporal and spatial reference frames. Through a combined stability 
analysis, in which small disturbances are permitted to amplify in both time 
and space, the relationship between the disturbance characteristics for the 
temporal and spatial reference frames is shown. In  these analyses a quasi-uniform 
assumption is adopted to account for the continuously varying mean-velocity 
profiles that occur behind flat plates and thin airfoils. It is found that the 
most unstable disturbances in the wake produce transverse oscillations in the 
mean-velocity profile and correspond to growing waves that have a minimum 
group velocity. 

Experimentally, the downstream development of the wake of a thin airfoil 
and the wave characteristics of naturally amplifying small disturbances are 
investigated in a water tank. The disturbances that develop are found to produce 
transverse oscillations of the mean-velocity profile in agreement with the 
theoretical prediction. From the comparison of the experimental results with the 
predictions for the characteristics of the most unstable waves via the temporal 
and spatial analyses, it is concluded that the stability analysis for the wake is to 
be considered solely from the more realistic spatial viewpoint. Undoubtedly, this 
conclusion is also applicable to other highly unstable flows such as jets and free 
shear layers. 

In  accordance with the disturbance vorticity distribution as determined 
from the spatial model, a description of the initial development of a vortex street 
is put forth that contrasts with the description given by Sat0 &I Kuriki (1961). 

1. Introduction 
One of the fundamental flows in fluid mechanics that has remained unexplained 

is that of the high Reynolds number wake development behind a moving stream- 
lined body. This applies both to streamlined bodies having an axis of symmetry 
parallel to the direction of motion, and to ‘two-dimensional’ bodies which are 

t Present address : Department of Oceanography and Geophysics Group, University 
of Washington, Seattle. 
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symmetric with respect to a plane oriented parallel to the direction of motion. It 
is this latter case that will be considered here. The search for a mechanism 
whereby a flow that began as a boundary layer attached to the surface of the 
body leaves it and develops downstream to form the well-known von KBrmBn 
vortex street has consistently attracted attention for many years. Many experi- 
mental studies have been made that have terminated with the advancement of 
hypotheses to account for the observations. Except in a few cases, however, 
where critical assumptions have been required to derive meaningful conclusions, 
the problem has not been theoretically described. Generally speaking, therefore, 
our understanding of the subject remains limited. 

Several gross features of a wake of this type are clear. For example, the motion 
is effectively two-dimensional, unsteady, and incompressible. Once the Reynolds 
number is large enough, the details of the particular body involved (whether a 
circular cylinder or a flat plate) tend to be lost and the ultimate wake is charac- 
terized by a shedding frequency f. The non-dimensional equivalent of the 
frequency is the Strouhal number S, (where S, = fD/U,, D is the wake width and 
Urn is the free-stream velocity), and for a circular cylinder its value has been 
observed to be 0.21 with only a weak dependence on the Reynolds number. 
Finally, for streamlined bodies, the laminar wake flow fields have been predicted 
analytically by similarity solutions which athough not strictly valid in the very 
near wake do indicate decent agreement with experimental results. 

A notable investigation directed toward an understanding of the wake behind 
a thin flat plate has been made by Sat0 & Kuriki (1961). These authors were 
concerned primarily with the transition of the wake and its far downstream 
characteristics. Their findings led them to speculate on the origins of these 
characteristics. Essentially, they visualized the initially laminar wake flow to be 
characterized by a configuration of oppositely rotating vortices lying along the 
centre-plane of the wake which ultimately become unstable. These vortices then 
mutually interact as they move downstream in the near wake and displace each 
other transversely to yield the classical von KBrmBn street. By combining some 
simple calculations with the measurements, Sato & Kuriki were able to synthesize 
a reasonable description and lend support to this hypothesis. 

The present work is concerned with the very near wake of the flat plate 
beginning at  the trailing edge and thus is complementary to the downstream 
wake measurements made by Sat0 & Kuriki. Specifically, this very near wake 
region is found to be linear in the sense that the intensity of the fluctuations is 
small thereby lending itself naturally to linearized stability analysis throughout. 
In  this paper, both a theoretical and an experimental study of this very near 
wake are presented. A mechanism to describe the initial stages of KBrmBn vortex 
street development based upon the conclusions of this work is suggested. In short, 
it is conjectured that the flow farther downstream is a consequence of the flow in 
the very near wake. 

The theory presented for the naturally developing disturbances involves a 
combination of both spatial and temporal analyses. The differences found using 
these two viewpoints are quite sensitive to mean-velocity profile shape (see 
Betchov & Criminale 1966). As a consequence, a quasi-uniform assumption was 
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adopted to approximate the changing mean-velocity profile with downstream 
direction. Gaster & Davey (1968) made spatial calculations on the original Sat0 
& Kuriki wake for comparison with the known temporal values. They concluded 
that a transformation using the group velocity could properly show equivalence 
between the two approaches. The particular case chosen for computation here, 
however, suffers from the same misleading assumption that the profiles preceding 
this station can yield no new behaviour. It will be shown that there are differences 
between temporal and spatial stability analyses in the very near wake; experi- 
mental evidence shows that the spatial viewpoint gives superior predictions for 
disturbance characteristics. Consequently, it is concluded that all future stability 
analyses in highly unstable flows such as jets and force shear layers should use 
the relevant spatial method. 

2. Experiment 
2.1. Description of facility 

The experiment was conducted in the John E. Nicholson Tilting Flume Facility 
of the Lewis F. Moody Hydrodynamics Laboratory of Princeton University and is 
described in detail by Mattingly (1968). By using screens and honeycombs the 
turbulence level was reduced to 0.04 yo for the range of mean velocities considered. 
The wake generating body was an NACA 0003 symmetric airfoil shape with 12 in. 
chord length and maximum thickness scaled to 0.375 in. The Reynolds number 
ranged between 1.6 x lo4 and 4.0 x lo4. 

Crude velocity measurements were made using the hydrogen-bubble flow 
visualization technique; detailed surveys were made using hot-wire anemometry 
where the sensor position was accurate to within 0.001 in. and 0.002 in. in the 
transverse and longitudinal directions respectively. The present wake, as seen by 
the hydrogen-bubble technique, is shown in figure 1 (plate 1). A survey of the 
near wake of the body confirmed that it is two-dimensional and spanwise uniform. 

2.2. Wake survey of perturbation characteristics 
The general aspects of the amplitudes and frequencies of the non-dimensionalized 
(with respect to the free-stream velocity) longitudinal perturbation velocity G 
under natural amplification are shown in the fluctuation map comprising figure 2 
(plates 2-4). Oscillographic records of anemometer response are shown for 
various wake stations both on the wake centre-plane and just off the axis of 
symmetry. The amplitude levels of the longitudinal perturbation velocity are 
recorded beside the respective oscillograph; the time interval between dots is 
0.1 sec. 

The solid lines in figure 2 delineate the wake boundaries. The dotted boundaries 
are intended to indicate the approximate extremities of the regions where (i) the 
level of oscillation is greater than or equal to 1.0 % and (ii) the second harmonic 
of the oscillation occurs. Note that precise boundaries cannot be given for the 
extremities of these regions either in naturally excited fluid flows or in artificially 
excited transition experiments. Note also the irregularity of the naturally 
excited signal. When oscillographs from artificially excited oscillations (for 
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example, Sat0 & Kuriki 1961; Freymuth 1966) are compared with those in the 
present study, it is discovered that the natural oscillations exhibited less regu- 
larity with regard to the frequency and amplitude of the fluctuations. 

It is interesting to note the extremely small perturbation level in the wake 
region very near the trailing edge. At wake station x/L = 0.2, where L is the 
chord length, the perturbation is found to be approximately 1.0 yo of the free- 
stream velocity. This 1.0 yo perturbation level occurs off the wake centre-plane. 
On the wake centre-plane, a similar 1.0 % perturbation level signal is not ob- 
tained until x/L = 0.25. The form of the oscillation is that of a two-dimensional 
sinusoidal velocity fluctuation that grows in the downstream direction. It will be 
seen later that this growth is exponential. 

A search was conducted to determine the beginning of the second harmonic 
of the oscillation and the region containing it. The second harmonic was found to 
occur on the wake centre-plane as near as x/L = 0.33 downstream of the trailing 
edge of the airfoil. As previously defined, and shown by the oscillographs, the 
region that contained the second harmonic is indicated by the slender shaded 
area in the figure. 

The intendedgoal is the predictionof the initial downstream development of the 
perturbation quantities given the assumptions involved. This is possible if we 
recognize from the fluctuation map that there is a range in the near wake region, 
from x/L = 0 to x/L = 0-3, that can be well defined and where linearized stability 
analysis can be applied. 

2.3, Velocity measurements 

The calculation of eigenvalues for the present wake required a detailed determina- 
tion of the wake velocity field. Along the wake centre-plane, the mean velocity 
was measured both in the near wake region and beyond. These results are shown 
in figure 3, where a comparison is made with the theoretical results of Goldstein 
(1929) and analogous experimental measurements of Sat0 & Kuriki (1961). In  
light of the present results, which indicate a markedly reduced longitudinal 
variation in the wake centre-plane velocity in the near wake region, it is surprising 
to find such good agreement between the experimental results of Sat0 & Kuriki 
and the theoretical results of Goldstein. The Goldstein result is achieved using 
boundary-layer approximations. Although these approximations are applicable 
in the far wake, it is clear from the large longitudinal gradient of the centre-plane 
velocity that such an assumption is questionable in the near wake. It is felt that 
perhaps the loudspeaker stimulation used in the Sat0 & Kuriki experiment to 
.excite selected disturbance frequencies could account for the difference between 
their results and the present measurements. 

To facilitate the computer calculation of the eigenvalues, the wake velocity 
profiles were smoothed, using the hyperbolic function 

u-urn -- - sech25Y, 
q-u, 

where Y = y/b and U, is the value of U on the centre-line. The quantity b is the 
half-breadth thickness, which increases very slightly with downstream distance 
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from a value of b = 0-125in. to b = 0.13Oin. between wake stations x/L = 0.003 
and 0.30. The quantity a is chosen so that ( U  - U,)/(U, - U,) = & at Y = t- 1. 
The result is shown in figure 4. Since the spatial eigenvalue results of Betchov & 
Criminale (1966) seem to indicate a sensitive dependence upon wake centre-plane 
velocity, the curve fit procedure matches this quantity directly, leaving small 
deviations from the smoothing curves to occur at  the outer edges of the wake. 

3. Theory 3.1. Development of equations 
Theoretical considerations are based upon two-dimensional linearized stability 
theory. Non-dimensionalization of velocities is achieved by taking as the unit of 
velocity the free-stream velocity Urn. Co-ordinates x (in the flow direction) and 
y (perpendicular to the flow direction) and t (time) are non-dimensionalized using 
the half-breadth thickness b of the mean flow profile to obtain X = x /b ,  Y = y/b, 
and T = U,,t/b. The pressure is non-dimensionalized using the product pU$, 
where p is the fluid density. Consequently, in non-dimensional variables, the 
composite fluid motion is described by 

u ( X ,  Y ,  T )  = U(  Y )  + G ( X ,  Y ,  T), 
v ( X ,  Y ,  T )  = qx, Y ,  T ) ,  

AX, y ,  T )  = P ( X )  + B ( X ,  y ,  T ) ,  

where tildes denote the disturbance quantities. 
The linear equations of motion allow solutions of the form 

G ( X ,  Y ,  T) = Re u( Y )  ei(ax-OT), 

f i (X ,  Y ,  2') = Rev( Y )  ei(aX-oT), 

p ( X ,  Y ,  T )  = Rep( Y )  ei(aX-oT). 

Viscous effects are excluded,f- and thus the governing equation becomes the 
Rayleigh equation obtained from continuity and momentum considerations. 
With mean flow quantities extracted it is written 

(U - c) (v" -a%) - U"V = 0,  (3.1) 

where U is the mean velocity profile being analysed. Primes denote derivatives 
with respect to Y ;  the relation w = ac has also been used. The problem is com- 
pleted by establishing the boundary conditions which require that the solutions 
be bounded for Y -+ & co. These conditions are denoted here by 

v'( If: co) T v( t- co) = (0, O ) ,  (3.2) 

where the double argument notation refers to the real and imaginary parts of the 
complex amplitude. 

7 The neutral curve for a two-dimensional wake has been determined by Curle (1957) 
and by Taneda (1963) for a wide range of Reynolds numbers. It is concluded from these 
curves that at large values of Reynolds number, viscosity has only a dampening effect on all 
wavy disturbances. Furthermore, at large Reynolds numbers, disturbance characteristics 
are found to be essentially independent of viscosity. 
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When the mean-velocity profile is symmetrical with respect to Y = 0 ,  the 
Rayleigh equation admits both symmetrical and antisymmetrical disturbances. 
Symmetrical disturbances, which will be referred to as mode I,T satisfy 

v(0) = (1, O ) ,  v'(0) = (0, O ) ,  (3.3) 

v(0) = (0, O ) ,  v'(0) = (1)  0). (3.4) 

while antisymmetrical disturbances, referred to as mode 11,s satisfy 

From continuity, symmetry in v(Y) implies antisymmetry in u ( Y )  and vice 
versa. Solutions exist only when the eigenvalues a and c satisfy the appropriate 
characteristic equations: F1(a, w )  = 0 for mode I or FII(a, w )  = 0 for mode 11. 

By virtue of the symmetry of the mean-velocity profile U( Y ) ,  we confine our 
attention to the semi-infinite interval (0, + co) and undertake the calculations of 
the a and c pairs satisfying the appropriate conditions at Y = 0 and Y = +co. 
Numerical methods are used to determine, separately, the symmetric and anti- 
symmetric solutions to the Rayleigh equation; the details can be found in 
Mattingly (1968). Using this numerical approach an infinite number of discreet 
pairs of a and w values can be found for both mode I and mode I1 disturbances. 

3.2. Temporal stability 

It has been the convention to consider the frequency w (for the phase velocity c) as 
a complex quantity and the wavenumber a as real. In  this way, the stability 
analysis provides a dispersion relation that determines the sign of the imaginary 
part of w for a given a. For w (  > 0, the disturbance grows exponentially in time 
and is termed a temporally unstable disturbance. Selection of the disturbance 
that is most unstable in time is based upon the maximum positive value of w,. 
According to the linearized theory, it is this disturbance, whether it is symmetric 
or antisymmetric, that will temporally dominate all others in the wake. To 
determine this dominant disturbance, we consider a superposition of the infinity 
of symmetric temporal disturbances in the form 

4(X, Y ,  T) = Re {x vI[ Y ;  an, w(an)] ei[anX-o(adT>, (3.5) 
n 

where the subscript n refers to all mode I disturbances for which a is a real 
quantity. The notation vI[ Y ;  a,, w(a,)] refers to the complex eigenfunction that 
is a function of Y alone, once the value a, is specified and the corresponding @(a,) 
is determined in accordance with the characteristic equation liI(a, w )  = 0. This 
superposition is the actual disturbance motion present in the wake as a result of 
the imposition of symmetry conditions at  Y = 0. Similarly, the superposition of 
antisymmetrical disturbances is written 

CI1(X, Y ,  T )  = Re {C v I I [ Y ;  a,, w(a,)]eirafix-(afi)*l 1) (3.6) 
n 

where the notation is that described above. The most unstable disturbance is 
found by comparing the exponential growth rates of the dominant symmetrical 
and antisymmetrical disturbances. 

t Sometimes referred to as the sinuous mode. 
Otherwise known as the varicose mode. 



240 G. E. Matt ingly and W .  0. Griminale 

3.3. Spatial stability 

When the wavenumber is considered complex, a = a,+iai, and the angular 
frequency is constrained to be real; the imaginary part of a is then a measure of 
the growth of the disturbance in the x direction and must be negative for in- 
stability-hence the term spatial stability. The requirement that w is a real 
quantity implies that 

In  either formulation the disturbance phase velocity is cp = wrla,. 

bance motions are written 

0% = a<cr+arci = 0. 

In  the case of spatial stability, the symmetrical and antisymmetrical distur- 

(3.7) Gl(X, Y , T )  = Re{xvl[Y; a(w,), wn]ei[a(03X-o T I}, 
n 

where the subscript n now refers to those disturbances for which w, is real. Of all 
these disturbances, the most unstable is that characterized by the minimum 
negative value of ai. 

To compare temporal theoretical and experimentally determined amplifica- 
tion rates, the disturbance phase velocity cp = w,la, (c, = c, in temporal formu- 
lation) has been used by many investigators to transform temporal results into 
spatial stability quantities. When time and space are related through X = cpT, 
the resultant spatial amplification rate is 

Oi8 = C l G i / G p ,  

where the S subscript implies spatial. The actual amplification rate in the 
temporal framework is wiT = aci. If the disturbance phase velocity is the same for 
all disturbance wavenumbers, or simply if the wave system is non-dispersive, 
then this is the proper transformation. However, in a dispersive system where 
travelling waves that have nearly the same wavelength and frequency are 
superposed, one finds that groups of wave packets are formed. These groups travel 
with a group velocity defined as 

Ugroup = %I%- 
It has been shown by Gaster (1963) that for small rates of amplification the 

disturbance frequencies determined from the temporal framework are approxi- 
mately equal to those of the spatial analysis. Later, Gaster (1965, 1968) con- 
cluded that for large amplification rates the analysis should be done spatially. 
However, despite this fact, spatial stability analyses have only recently received 
attention, and consequently theoretical versus experimental agreement of the 
amplification rates in highly amplified flows is consistently poor. 

3.4. Combined stability 

For completeness, the case of complex wavenumber, complex phase velocity, 
and complex frequency is termed combined stability to denote disturbances that 
can grow in both time and space. The generalized a,c and w = ac determined 
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under these conditions contain the restricted eigenvalues of the previously 
described temporal and spatial cases. Having these generalized eigenvalues 
permits a search procedure for the combined general values t o  be started through 
interpolation. Moreover, it is through these combined stability results that the 
relationship between the temporal and spatial cases is shown. 

For instance, it has been shown by Gaster (1963) that in cases where the 
amplification rate is small, the temporal and spatial growths are related through 
the group velocity by 

wis = arCiT/Ugroup.T* (3.9) 

Gaster & Davey (1968) then applied this group velocity transformation to the 
wake profile used by Sat0 & Kuriki (1961) and found the results to be quite 
similar to their phase velocity transformed amplification rates. That is, the 
amplification rates found by Sato & Kuriki were actually temporal results that 
were transformed into spatial quantities using the phase velocity. The particular 
profile used for their linearized stability analysis is one for which the amplifica- 
tion rates are quite small. This accounts for the agreement between these two 
results. However, it will be shown below that amplification rates are not small 
throughout the near wake region where the linearized analysis is pertinent. In  
fact, significant differences will be found between actual spatial results and 
temporal results obtained using the group velocity transformation. 

Gaster (1968) examined the saddle-point singularities found by Betchov & 
Criminale (1966) in their jet and wake eigenvalue calculations. By considering 
the analyticity of the characteristic function &(a, w ) ,  Gaster used a series expan- 
sion to show that the singularities must occur and the influence they exert on the 
motion results from a pulse input. This motion is found to be dominated by a 
disturbance having an amplification in both time and space proportional to 

exp - [a:X - oi(a*) T] 

where the asterisks refer to the eo-ordinates of the saddle-point singularity. 
Given this result, Gaster found that the maximum amplification with respect to 
time arises when ai = 0, and similarly that the maximum spatial growth occurs 
when the saddle point lies on the line wi = 0. 

This maximum spatial growth rate is found by transforming the saddle-point 
co-ordinates onto the wi = 0 contour. To do this, a series expansion of the charac- 
teristic function FI(a, w )  is used to express the relation o = w ( a )  in the neighbour- 
hood of the saddle point as 

0 -w* = ;(a-a*)2FI;aa(a*, w*)/F;,(a*, w * ) ,  (3.10) 

where a is a double-valued function of w ,  and the subscripts a, w refer to the partial 
derivatives of F(a,  w ) .  Therefore, the purely spatial growth rate is written 

Ima, = Im{a* rt [ -2(w,--w*)F~WI~*,w*)/FI, , (a*,w*)]~} ,  (3.11) 

where Im denotes the imaginary part of the complex number and the subscript S 
means spatial, i.e. wis = 0. 

16 F L M  51 
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3.5. Quasi-uniform assumption 

The velocity measurements shown in figure 4 reveal that the wake-velocity pro- 
files in the near wake region are suitably smoothed by the square of hyperbolic 
secant function. In  addition, the longitudinal variation of the wake centre-plane 
velocity U, is shown in figure 3 to deviate markedly from the theoretical assump- 
tion that the mean velocity is a function of Y only. Given this experimental result, 
a quasi-uniform assumption is now adopted whereby a series of mean-velocity 
profiles are selected throughout the wake region where disturbance amplitudes 
are small. The eigenvalue computation is then performed, using each successive 
wake profile individually with the hope that the combined result will predict the 
effect of longitudinal variations due to the continuously changing mean profiles. 
Certainly this procedure is an improvement upon the usual practice. This has 
consisted of selecting a single mean-velocity profile for which eigenvalues are 
computed and compared with the experimental measurements made throughout 
the fluid flow where disturbance levels comply with the linear theory. 

3.6. Neutral eigenvalues 

Working with the assumption that both the wavenumber a and the phase 
velocity are real quantities, it is possible to calculate the neutral eigenvalues for 
mode I and I1 disturbances. Following Betchov & Criminale (1967), these are 
found to be a = 1.762, w = 0.587, and c = 0.333 for mode I disturbances for the 
wake profile at  x/L = 0. Characteristics for mode I1 disturbaiices are a = 0.880, 
w = 0.293, and c = 0.333. 

In  addition, it can be shown that non-trivial solutions to the Rayleigh equation 
exist for mode I and I1 disturbances characterized by the eigenvalues 

01 = w = c = 0. 

Consequently, for both mode I and I1 disturbances, we have two solutions to 
equation (3.1) satisfying the appropriate boundary conditions. These eigenvalues 
will be found to be the intersections of the ai = 0 temporal stability line and the 
wi  = 0 spatial stability line. For this reason, the above four sets of eigenvalues 
could be termed double neutral eigenvalues. The non-trivial double neutral 
eigenvalues are interesting because the critical layer is determined from the 
neutral phase velocity. 

A very convenient eigenvalue transformation can be formulated through the 
form of the Rayleigh equation and the particular wake mean-velocity profile. 
Once a set of values a, and c, have been found for a specific wake profile, say 
V, = 0, then the corresponding set of values a, and c( U,) can be determined for any 
other wake profile using 

cl-  1 
1 - u, C(U,) = - + 1.  (3.12) 

This transformation applies only to the temporal and combined stability 
eigenvalue results; there is no analogous transformation for the purely spatial 
stability analysis. However, using this procedure, considerable computing time 
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is saved by initiating the spatial eigenvalue search procedure with excellent 
choices obtained via interpolation between the copious combined stability 
eigenvalues. 

3.7. Eigenfunctions 

The solutions to the governing equation are obtained numerically. With selected 
eigenvalue results, the eigenfunctions are computed as follows. Taking V( Y )  as an 
example, where w is real and a is complex, the actual disturbance has an ampli- 
tude 

and a phase 
Iv( Y)I = [v( Y )  v*( Y)I4 

v( Y )  - v*( Y )  
i[v( Y )  +v*( Y ) ]  < 7r- 

- - 7 ~  < O,( Y )  = tan-l 

Therefore 
6 ( X ,  Y ,  T )  = Re(lv( Y)Ieioe-~ixeiarX-iwT 1. (3.13) 

Averaged quantities will be of interest. For the spatial reference frame, the 
pertinent average is the time average defined by 

E2(X,  Y )  = lim - sToC2(X ,  Y ,  T )  dT = +v( Y )  v*( Y )  e--%aix. (3.14) 
T , - w T o  0 

The Reynolds stress is the mean-cross product and is defined by 
- 

7 = -p.iiv" = - $[u*( Y )  v( Y )  + u( Y )  v*( Y ) ]  e--Paix. . (3.15) 

At successive wake stations, transverse distributions of the Reynolds stress will 
be examined from the temporal and spatial stabilityresults. In these distributions, 
the exponential factor will be excluded for scale reasons that will be discussed 
shortly. 

4. Wake profiles 

Adopting the quasi-uniform assumption, a wake centre-plane velocity 

4.1. Initial wake profile - mode I disturbances 

u, = 0.0012 

is obtained from figure 3 for the wake station x/L = 0.003. For this wake profile, 
the mode I eigenvalue results plotted in the complex w plane for various values of 
complex a are presented in figure 5. These eigenvalues illustrate graphically the 
complex and explicit relationship w = w ( a )  that is also written implicitly and 
referred to as the characteristic equation for mode I disturbances F,(a, w) = 0. 
The temporal stability contour, labelled ai = 0, contains unstable mode I 
disturbances having wavenumbers in the range 0 < a, < 1-762 with angular 
frequencies 0 < w, < 0.590. The corresponding range of temporal amplification 
rate is 0 < wf < 0.140. 

The disturbance wave system is a dispersive one, and a temporal to spatial 
transformation made using the group velocity Umoup leads to the disturbance 

16-2 
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wavenumber aF and the spatial amplification rate a&?&oup presented as 
functions of frequency w, in figure 6. The most unstable disturbance has a spatial 
amplification rate of a,ci/Ugroup = 0.625. The corresponding wavenumber and 
frequency are a, = 1.300 and w, = 0.550 respectively. 

Figure 5 indicates that as a, increases along the constant a, lines labelled 
ai = 0 or cx; = -0.4, curved-clockwise contours are traced about the point 
o = (0.49, 0.049). Conversely, as a, increases along the line a, = - 1.0, a counter- 
clockwise contour is traced about w = (0.49, 0.049). Consequently, in the neigh- 
bourhood of this particular point, the relationship a = a(@) is double-valued. 
With the exception of the neighbourhood of this point, lines of constant a, and a, 
are found to intersect orthogonally, indicating the analyticity of the functions 
w = @(a) and a = a(w).  The relationship between w and a in the neighbourhood of 
the point is clarified by the plot of these same eigenvalue results in the a plane 
where 0, and w, are constant. This plot, displayed in figure 7, reveals the explicit 
relationship a = a(w)  to be a saddle point. To analyse figures 5 and 7 from the 
spatial point of view, attention is focused on the mode I disturbances for which 
wi = 0. In  this framework, it is recalled that the disturbances only oscillate in 
time and grow or decay exponentially with downstream distance according to 
the imaginary part of the wavenumber a,. Furthermore, we restrict the following 
discussion to downstream-moving waves and groups of waves, i.e. those having 
positive phase and group velocities. 

Taking the superposition 

v,[Y; a(w,), w,] e i [ a ( ~ ~ ) X * ~ T l  
n 

we consider only positive values of w, and a, and proceed to extract the most 
highly amplified eigenmode. In  figure 7 we find two distinct contours for which 
wi = 0. Both of these contours are portrayed in figure 5 by the eigenvalues lying 
along the w, axis. Considering the wi = 0 contour in figure 7 along which both 
a, and w, increase from zero, the group velocity Ugroup = aw,/aa, is found to 
decrease to zero at  the frequency w, = 0.492. As w, is increased farther along this 
contour, the group velocity becomes negative, indicating that these groups of 
waves are moving upstream and are damped by virtue of their negative values of 
ai . 

On the other w, = 0 contour in figure 7, waves having 0, > 0.492 are found to 
be downstream moving with positive group velocities. For frequency in the 
interval 0.492 < w, < 0.590, the imaginary parts of the appropriate wave- 
numbers are negative, indicating disturbance amplification with downstream 
distance. For w, > 0.590, disturbances are damped as shown by the sign change 
of ai in figure 5. On this same w, = 0 contour when w, < 0.492, the group velocity 
is again found to be negative, indicating upstream-moving groups of waves that 
are damped by virtue of their negative values of a,. Therefore, two separate 
contours for downstream-moving groups of waves having exponential amplifica- 
tion are found in the wake. Accordingly, it is noted that no stability prediction is 
immediately evident for disturbances having wavenumbers in the interval 
0.52 < a, < 1.59. Two disturbances, each having frequencies w, = 0.492, with 
wavenumbers a, = 0.52 and a, = 1.59, are predicted to have purely spatial 
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amplification rates, ai = - 0.70. In  the previous temporal stability analysis, a 
continuous spectrum of disturbance wavenumbers is predicted to be unstable 
in the spatial sense. Consequently, the superposition (see equation (3.7)) is made 
continuous in wavenumber by utilizing the connecting path consisting of the 
combined stability eigenvalues along the w, = 0.492 contour in figure 7. In this 
manner, we will select from the continuous speckrum of disturbances the wave- 

I I I I I I I I I 1 1 
0.4 - - 

0.2 - 

-1.2 - 

0.2 0.4 0-6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

a, 

FIGURE 7. Combined stability eigenvalue results : mode I disturbances. 
x/L = 0.003. 

number and angular frequency for the most highly amplified wave. This selection 
is khen governed by the point on the contour having the largest negative ordinate. 
Figure 7 shows this point to be the saddle point. Since it lies on the combined 
stability contour, the most highly amplified disturbance is predicted to have 
growCh in both time and space. This wave has wavenumber a, = 1.09, frequency 
w, = 0.492, and an amplification of ai = - 0.75 and wi = 0-049, which are the 
co-ordinates of the saddle point (a*, w*). The relationship between w and a in the 
neighbourhood of the saddle point is used to determine the variation in ai that 
occurs as wi is reduced to zero while w, remains constant. In  this way, the strictly 
spatial growth of the saddle-point disturbance is evaluated. 
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The relationship w = w(a)  in the neighbourhood of the saddle point is given by 
equation (3.10). Since numerical values for FIaa(a*w*) and FIw(a*w*) are not 
available, the transformation is performed graphically using figure 7. From the 
saddle point (a*w*),  we find that either path along the w, = 0.49 contour as 
wi+ 0 affects an identical change in the value a,, namely a, -+ - 0.70 as wi = 0. 

It is important to note that such a graphical procedure is equivalent to fabri- 
cating a velocity that prescribes the temporal to spatial transformation. As the 
group velocity at the saddle point is zero, we take the pertinent velocity 

as that used to relate time and space by X = Re { U*}T. The purely spatial growth 
is then exp ( - [a: - wz/Re { U*}] X ) .  

The eigenvalue results for the strictly spatial analyses will be found with 
successive wake profiles to have continuity in both angular frequency and wave- 
number. As a consequence, the most highly amplified disturbance is found without 
resorting to the combined stability eigenvalues and transforming saddle-point 
co-ordinates back t o  purely spatial stability results. 

4.2. Initial wake profile - mode I1 disturbances 

With the wake centre-plane velocity U, = 0.0012, the temporal, spatial and 
combined stability eigenvalues are found for mode I1 disturbances and are 
shown in figure 8. The saddle-point influence is not as apparent in the previous 
results. 7 

0.2 

0.1 

0 

-0.1 

= 0.6 
cr,=o4 

-O.* - 0.3 ; 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

a, 
FIGURE 8. Combined stability eigenvalue results : mode I1 disturbances. 

x/L = 0.003. 

t Cost considerations precluded the computation of eigenvalues in both forms, i.e. 
o = w ( a )  and a = a(@). The exception is the initial wake profile where eigenvalues for 
mode I were computed in both forms to clarify the nature of the saddle point. However, 
the presentation of eigenvalue results in the form o = @(a) will be sufficient to clarify the 
stability analyses. 
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FIGURE 9. Transformed temporal stability eigenvalue results : 
mode I1 disturbances. x / L  = 0.003. 

0, 

FIGURE 10. Spatial stability eigenvalue results : 
mode I1 disturbances. x / L  = 0.003. 

To analyse the results in figure 8 in the temporal fashion, we again apply the 
group velocity transformation, which results in the eigenvalues shown in figure 9. 
The most highly amplified mode is characterized by a, = 0.40, w, = 0-130 and 
a.,Ci/Ugroup = 0.08. 

Figure 10 presents the strictly spatial stability eigenvalues for mode I1 dis- 
turbances in this initial wake profile. The resultsreveal that the disturbance which 
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will dominate all others in this wake profile is that having a, = 0.40, w, = 0.110, 
ai = - 0.11. A comparison of these spatial results with those of the transformed 
temporal analysis confirms Gaster’s (1963) conclusion that the group velocity 
transformation is valid, provided the amplification rates are small. A similar 
comparison of the mode I results indicates marked differences in the two pre- 
dictions. 

From the most highly amplified characteristics for mode I and I1 waves, it is 
concluded that mode I disturbance having a, = 1-09, w, = 0.492 will dominate all 
other eigenmodes at the wake station x/L = 0.003 by virtue of its maximum 
spatial amplification rate ai = - 0.70. It is this eigenmode that can be expected to  
exist in the real wake. 

4.3. Subsequent wake projiles 

The next downstream wake station chosen is x/L = 0.02, where the wake centre- 
plane velocity U, = 0.0532. The combined stability eigenvalues for mode I 
disturbances are shown in figure 11. The saddle point, which originally appeared 
above the w, axis, has now moved down and is located just below this axis. As a 

0 3  

0.2 

0.1 

wi 

0 

-0.1 

- ~~ - 0.2 
0 0.1 0.2 0.3 0.4 0 5 0.6 ~ 0.7- 0 8 ~ 0 9 1.0 

% 

FIGURE 11. Combined stability eigenvalue results : 
mode I disturbances. x/L = 0.02. 

result of the displacement of the saddle-point, the wi = 0 contours pertaining 
to  the upstream- and downstream-moving groups of waves are continuous. 
Although the relationship a = a(@) is not presented, this result can be deter- 
mined from figures 5 and 7. 

Figure 12 presents for mode I disturbances the eigenvalues transformed to the 
spatial fra,me using the group velocity. It is found from these results, which are 
based on the temporal analysis, that disturbances having frequencies 

0 < W, < 0.650 

and wavenumbers 0 < a, < 1.762 are unstable with spatial amplification rates 
in the interval 0 < a,ci/Ugroup < 0.470. Of these disturbances, the one having 
w, = 0.560 and a wavenumber a, = 1.14 will dominate all others by virtue of 
its maximum amplification rate, a,c,/U,,, = 0.470. 
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FIGURE 12. Transformed temporal stability eigenvalue results : 
mode I disturbances. x[L = 0.02. 
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FIGURE 13. Spatial stability eigenvalue results : 
mode I disturbances. x/L = 0.02. 
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The spatial stability eigenvalues, plotted in figure 13, show that disturbances 
having frequencies in the range 0 < 0, < 0.650 and wavenumbers 0 < 01,. < 1-762 
are predicted to be unstable. These mode I eigenvalue results indicate that the 
wake profile at  xlL = 0.02 is a highly tuned amplifier for a disturbance frequency 
of w,. = 0-520 and wavenumber a, = 1.0 because of its amplification rate 
ai = - 1.0. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 

"r 

FIGURE 14. Combined stability eigenvalue results : 
mode I disturbances. x / L  = 0-30. 

", 
FIGURE 15. Spatial stability eigenvalue results : 

mode I disturbances. x / L  = 0.30. 
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Disturbance eigenvalues for wake stations between x /L  = 0.02 and x/L = 0.30 
will be deleted for the sake of brevity, since only slight variations of the previous 
results are found (see Mattingly (1968) for details). At the final wake station 
considered, xlL = 0.30, the wake centre-plane velocity is found to be U, = 0.440. 
The combined stability eigenvalues are plotted in figure 14; those for the spatial 
reference frame are shown in figure 15. The contours in figure 14 indicate that the 
saddle point has continued to move even farther below the w, axis. In the spatial 
analysis, the dominant disturbance has w, = 0.650 and a, = 0.887 with amplifica- 
tion rate ai = - 0.130. 
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1.6 

1.4 

1.7 

1 .0 
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a, 

n 

I I I I I I I I I  

0 
0 0 1  0.2 0 3  0 4  0 5  0 6  0.7 0 8  0 9  1.0 

w, 

FIGURE 16. Transformed temporal eigenvalue results : 
mode I disturbances. x / L  = 0.30. 

Figure 16 shows the pertinent eigenvalues transformed to spatial results in the 
temporal framework. By virtue of its maximum amplification rate of 

a,Ci/Ugroup = 0,130, 

the most unstable symmetrical disturbance has frequency w, = 0.650 and wave- 
number a, = 0.880. When these transformed temporal results are compared with 
the corresponding characteristics of the spatial case, they are found to be identical, 
thereby verifying Gaster's (1963) conclusion regarding the relevance of the group 
velocity transformation. 

The mode I1 combined stability eigenvalues for wake station x / L  = 0.30 are 
plotted in figure 17 with the spatial results shown in figure 18. The most unstable 
disturbance is found to have w, = 0.275 and a, = 0.459 with an amplification rate 

The dominant disturbance characteristics as predicted by the linearized 
stability theory and based upon the quasi-uniform assumption are listed in 
tables 1, 2 and 3. 

~ l i  = -0.034. 
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FIGURE 17. Combined stability eigenvalue results : 
mode I1 disturbances. x / L  = 0.3. 
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FIGURE 18. Spatial stability eigenvalue results : 
mode I1 disturbances. x / L  = 0.3. 

For mode I disturbances, the angular frequency a t  the successive wake stations 
is observed to increase monotonically with downstream distance in the range 
0.492 < w, < 0.650. At the same time, the most highly amplified wavenumber is 
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found to decrease monotonically throughout the interval 1.090 > a, > 0.887. 
Interesting behaviour is also noted in the longitudinal distribution of the spatial 
amplification rate. Between xIL = 0.003 and xlL = 0.02, the quantity -ai is 
found to increase with downstream distance. At x/L = 0.02 where, it is recalled, 
the saddle point just passed through the w, axis (see figure ll),  the spatial 
amplification rates reaches a maximum value. Past this wake station, the spatial 
amplification rate of the dominant disturbance a t  each wake station exhibits a 
monotonically decreasing dependence with downstream direction. 

X l L  0.003 0.02 0.05 0.15 0.30 

uc 0.0012 0.0532 0.1290 0.308 0.440 
- ai 0.700 1.000 0.41 1 0.202 0.130 

a T  1.090 1.000 0.994 0.900 0.887 
% 0-492 0.520 0.550 0.600 0.650 

Wake profile U = 1 - (1 - U,) sech2 aY. 

TABLE 1. Spatial stability eigenvalues for mode I disturbances 

X l L  0-003 0.02 0.05 0.15 0.30 

ue 0.0012 0.0532 0.1290 0-308 0.440 
- a, 0.110 0.095 0.078 0.049 0.034 
a? 0.398 0.399 0.406 0.447 0.459 
W? 0.110 0.125 0.150 0.225 0.275 

Wake profile 77 = 1 - (1 - U,) sech2 aY. 

TABLE 2. Spatial stability eigenvalues for mode I1 disturbances 

X I L  0.003 0.02 0.05 0.15 0.30 

u, 0.0012 0.0532 0.1290 0.308 0.440 
a? w,,, 0.625 0.470 0.340 0.185 0.130 
a, 1.300 1.140 1.070 0.990 0.880 
"T 0.550 0.560 0.585 0.650 0.650 

Wake profile U = 1 - (1 - U,)  sech2 aY. 

TABLE 3. Temporal stability eigenvalues for most highly amplified mode I disturbances 

In  table 2, the frequency of the dominant antisymmetrical disturbances a t  
each successive wake station is predicted, according to spatial theory, to increase 
with downstream distance through the range 0.110 < w, < 0.275. The distur- 
bance wavenumber is also found to increase monotonically from a, = 0.398 to  
a, = 0.459. It is also noted that the antisymmetrical amplification rates decrease 
steadily from -a, = + 0.110 t o  ai = 0.034. Thus, despite the varied dependence 
of amplification rate upon downstream distance, the present spatial theory 
demonstrates that mode I1 disturbances are everywhere dominated by the mode 
I variety throughout the interval 

0.003 < x/L < 0.30. 
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Table 3 lists the characteristics of the dominant mode I disturbances predicted 
by the temporal analyses where the group velocity transformation is used. It is 
found that frequency of the most highly amplified eigenmode exhibits a depen- 
dence on downstream distance that increases monotonically from 0.550 to 0.650. 
Although this trend is in agreement wiCh the corresponding results of the spatial 
theory, the quantitative differences are apparent at the upstream wake stations. 

The dominant wavenumber distribution, which according to the temporal 
viewpoint decreases steadily from a, = 1.300 to a, = 0.880, agrees qualitatively 
with the spatial results. Once again, though, the quantitative discrepanciesprevail 
where amplification levels are high. Where spatial growth rates are small, the 
equivalence of the two viewpoints is apparent. 

It is important to note the difference between the downstream distributions of 
the temporal and spatial results for amplification rate. The temporal prediction, 
which is observed to decrease monotonically from 0.625 to 0.130, should be 
contrasted with that of the spatial analysis. Note also the marked qualitative 
and quantitative differences. 

4.4. Eigenf unction computations 
Knowing the characteristics of the most highly amplified disturbances at  the 
successive wake stations, we now examine distributions of the corresponding 
eigenfunctions. The longitudinal and transverse disturbance velocities and the 
disturbance vorticity distributions will be presented only for wake statioiis 
x / L  = 0,003, 0.02 and 0.30. These distributions are presented for mode I and 
I1 disturbances using the spatial theory and for mode I disturbances using the 
transformed-temporal theory where the group velocity is used. 

Knowing the most highly amplified mode I disturbance characteristics at  
wake stations x/L = 0.003, 0.02 and 0.30, the corresponding longitudinal and 
vertical disturbance velocities are computed. The results, which are plotted in 
figure 19, show that the longitudinal component of disturbance velocity has 
basically the same form through this near wake region. Close scrutiny reveals that 
the maximum amplitude occurs at  Y = 0.60, just inside the critical layer 
located at Y = & 0.75. Furthermore, this peak amplitude is found to decrease 
slightly between x / L  = 0.003 and x/L = 0.02 and to increase between x/L = 0.02 
and x / L  = 0.30, where it reaches a maximum exceeding that at the initial wake 
station. The amplitude of the transverse disturbance velocity component has 
the same shape throughout this near wake region with the distribution becoming 
broader as the downstream distance increases. 

The plot of the phase angle O,( Y )  indicates the symmetry of the transverse 
disturbance velocity for all three wake stations. At the edges of the wake, this 
phase angle approaches n radians, at the downstream location x / L  = 0.003. 
Farther downstream OJY) reaches a phase angle of n radians at  Y = k2.6.  
However, there is no reversal of the transverse disturbance velocity at this point, 
or at  any downstream station. The distributions of the phase angle On( Y )  for the 
longitudinal disturbance velocity demonstrate that at each wake profile a phase 
shift of n radians occurs at  Y = 0, thereby confirming the distribution of u to be 
antisymmetrical. 
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The most highly amplified mode I1 disturbance characteristics from wake 
stations x/L = 0.003, 0.02 and 0.30 enable computation of the corresponding 
eigenfunctions. Longitudinal and transverse disturbance velocities are presented 
in figure 20. Note that the amplitudes u( Y )  and v( Y )  have essentially the same 
form throughout this near wake region. Furthermore, the minor peaks in the 
u( Y )  distribution increase between the initial profile and wake station x/L = 0.02. 
Between this wake station and xlL = 0.30, these same peaks decrease. The 
transverse component amplitude exhibits a cross-stream profile that remains 
unchanged qualitatively with downstream distance between xlL = 0.003 and 

The phase diagrams also remain essentially unchanged throughout this wake 
region. With the zero amplitude at  the wake centre-plane and a shift of 7~ radians 
at this location, the transverse component of the disturbance velocity con- 
tinuously reverses directions. As the distribution &( Y )  is continuous in the 
cross-stream direction and symmetric with respect to Y = 0, we conclude that 
the velocity u is also symmetric. We thereby verify the antisymmetric character 
of mode I1 disturbances. 

Figure 21 (a )  presents the results of cross-stream distributions of vorticity 
for mode I disturbances. Three vorticity peaks are found at each of the wake 
stations, with the largest occurring on the centre-plane in accordance with the 
mean profile curvature. Note that the vorticity changes sign as the mean profile 
curvature changes sign at the critical layer. The secondary peaks in vorticity 
occur outside the critical layer at  the two upstream wake stations at Y = ? 1.0. 
In the downstream co-ordinate, these secondary peaks exhibit a decrease in 
amplitude between the two upstream wake stations. Between the two down- 
stream wake stations, these secondary peaks are found to increase markedly, 
reaching an amplitude of more than twice the corresponding value at the initial 
profile. In  addition, the transverse location of the secondary vorticity peaks 
increases slightly a t  the downstream profile. The distribution of disturbance 
vorticity in this near wake region suggests a new vortex street generation process. 
The new mechanism will be presented in the following discussion as an alter- 
native to that put forth by Sat0 & Kuriki (1961). 

The mode I1 vorticity distributions are presented in figure 21 (b) .  Two major 
peaks occur, plus an additional phase shift due t o  the antisymmetric character 
of v(Y). The secondary peaks remain essentially unchanged while the major 
peaks diminish with downstream distance. 

Proceeding toward the formation of the von Kkm&n vortex street, which is 
ultimately developed in the wake of flat plates and thin airfoils, we now consider 
the Sat0 & Kuriki vortex model. They speculate that near the trailing edge of the 
wake generating body, a single row of vortices, which rotate alternatively in 
opposite directions, lies along the centre-line of the wake. This model accounts 
for their anemometer data in this region of the wake. At some point farther 
downstream, alternate vortices are displaced transversely in accord with the 
local-induced velocity fields, and a vortex street is thereby formed. The vortex 
street configuration is found t o  be stable until three-dimensional distortional 
effects ultimately cause the wake to become turbulent. 

xIL = 0.30. 
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The present model is suggested in contrast to that of Sat0 & Kuriki. According 
to the linearized stability theory, thedisturbancevorticity distributions presented 
in figure 21(a) are superposed on the mean vorticity of the respective wake 
velocity profiles. It is recalled that all the eigenfunction distributions are scaled 
relative to the symmetry conditions imposed at Y = 0 and that exponential 
amplification factors are temporarily excluded. 

When the mode I vorticity distributions are superposed upon the mean values, 
it is found that at Y = 0 the only vorticity component present is that of the 
disturbance. This vorticity component is the major peak shown in each of the 
cross-stream profiles in figure 21 (a).  In  addition, the secondary vorticity peaks 
that occur beyond the critical layers are also superposed upon their respective 
mean vorticity profiles. Here, the mean vorticity, being antisymmetric with 
respect to  Y = 0 ,  is not zero and is oppositely signed. Therefore, the superposition 
produces a vorticity component at Y = 0 that oscillates about the zero mean 
vorticity. 

Just beyond the critical layers, two other oscillating components occur that are 
in phase with each other. Each of these components, it is recalled, is out of phase 
with the centre-line component. Consequently, these two secondary vorticity 
peaks produce an additive contribution to the mean vorticity beyond one of the 
critical layers and a subtractive contribution beyond the other. Half a cycle 
later, the situation is reversed. Where the superposition was additive, it becomes 
subtractive and vice versa. It has been shown from the disturbance vorti- 
city distribution that these secondary vorticity peaks are reduced with down- 
stream distance between wake station x/L = 0.003 and 0.02. However, between 
xlL = 0.02 and 0.30, these same peaks are found to increase markedly to ampli- 
tudes that exceed twice their values at the initial wake station. As a result, 
oppositely signed vorticity concentrations would be highly amplified on either 
side of the wake centre-plane. These oppositely signed vorticity concentrations 
would be displaced in time according to the disturbance frequency. On the wake 
centre-plane, the oscillating disturbance vorticity component is again amplified, 
but at a reduced spatial rate. 

It is therefore concluded that although an amplified and oscillating component 
of disturbance vorticity exists on Che wake centre-plane, vorticity concentra- 
tions located beyond the critical layers are even more highly amplified. The 
concentrations are predicted, according to the linearized spatial stability theory, 
to have the longitudinal spacing and the proper phase relationships that pertain 
to the classic von K&rm&n street. 

As a result, in contrast to the mechanism proposed by Sat0 & Kuriki, the 
vortex street development does in fact, begin in the very near wake and in 
accord with the predictions of the linearized theory. As the disturbance quantities 
are amplified in the more distant wake, the previously neglected non-linear 
terms in the equations of motion undoubtedly are needed to describe the vortex 
street phenomena. As the double row vortex street configuration is developed 
further, the anemometer response in the wake centre-plane region indicates the 
second harmonic component as seen in the fluctuation map of figure 2. 

In addition to the distributions of disturbance velocities and vorticity, the 
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FIGURE 22. Reynolds stress distributions at five wake stations according to spatial theory. 
(a) Mode I disturbances. ( b )  Mod0 I1 disturbances. Top t o  bottom: xlL = 0.003, 
x/L = 0.02, x /L  = 0.05, x ~ L  = 0.15, x ~ L  = 0.03. 

Reynolds stress profiles were calculated. These stresses provide the mechanism 
through which energy from the mean flow is transferred to the disturbance 
motion. When the local Reynolds stress (defined in equation (3.15)) and the mean 
vorticity are of like sign, the disturbance energy increases at  the expense of the 
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FIGURE 23. Distribution of the Reynolds stress, T at successive wake stations. Transformed 
temporal theory. Mode I disturbance. Top to bottom: x / L  = 0.003, x /L  = 0.02, xlL = 0.5, 
x/L = 0.15. 
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mean motion. Conversely, Reynolds stress and mean vorticity of opposite sign 
imply energy transfer from the disturbance to the mean motion. 

The Reynolds stress distributions were calculated for the most highly amplified 
of both mode I and I1 disturbances according to the spatial theory. In  addition, 
there are presented the Reynolds stress distributions for the most highly ampli- 
fied mode I disturbances at  successive wake stations according to the temporal 
theory where the group velocity transformation is used to convert to the spatial 
reference frame. 

The Reynolds stress distributions for the spatial stability predictions of the 
most highly amplified mode I disturbances are presented in figure 22 (a).  Through- 
out the five wake stations, the Reynolds stress is appropriately antisymmetric 
with respect to Y = 0. It is important t o  note the variation of the cross-stream 
distributions with downstream distance. At the initial wake station, the Reynolds 
stress and the mean vorticity are of opposite sign on either side of and adjacent 
t o  the wake centre-plane. In  this region, energy is transferred from the distur- 
bance to the mean motion. This transfer of energy to the mean motion near 
Y = 0 is continued at wake station x/L = 0.02 where the Reynolds stress reaches 
a stabilizing peak at  Y = t-0.25. With farther distance downstream, this 
stabilizing Reynolds stress changes continuously into a completely destabilizing 
cross-stream profile at  x/L = 0.15 and 0.30. 

In  figure 22 (b ) ,  the Reynolds stress distributions are presented for the most 
highly amplified mode I1 disturbance characteristics. The qualitative aspects of 
the cross-stream distributions are essentially preserved throughout the five wake 
stations. Figure 23 presents the cross-stream Reynolds stress distributions for 
the most highly amplified mode I disturbances predicted with the temporal 
analysis where the group velocity transformation is used t o  obtain spatial 
results. A comparison of this distribution with those of the true spatial analysis 
reveals both qualitative and quantitative discrepancies. It is concluded, therefore 
that only the complex wavenumber model should be used to perform the stability 
analyses at  the successive wake stations. 

5. Measurement of disturbance characteristics 
Using anemometry, measurements at  successive wake stations were made of 

the disturbance wavelength, frequency, and the r.m.s. distributions for the 
longitudinal component of the disturbance velocity. Measurements of the longi- 
tudinal r.m.s. velocity also provided a determination of the symmetry charac- 
teristics of the natural disturbances occurring in the wake and local values of the 
spatial amplification rate. 

Experimental results for the disturbance frequencywere obtained from anemo- 
meter oscillographs (see figure 2). Because this figure shows the disturbance 
amplitudes to be maximum just off the wake centre-plane, the frequency survey 
was conducted at Y = 1.0. 

The cross-stream distributions of iizlUm for successive wake stations in the 
near wake region are presented in figure 24. The maximum values of these 
distributions at  each location were reproducible to the extent shown by the 
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multiple data points. Although phase measurements were not made for the 
longitudinal disturbance velocities on either side of the wake centre-plane, these 
results are to be compared with the corresponding eigenfunctions for mode I and 
mode I1 disturbances. The qualitative results confirm that the naturally ampli- 
fying disturbances in the wake are of the mode I variety. Local average values of 
the spatial amplification rate can be obtained from the data presented in figure 24. 
Using a finite-differencing calculation of the form 

-ai = A log ( (2 ) i /U , ) /Ax  

0,004 

- c.iiz,+ 0.002 

urn 

0.00 
-0.5 -0-4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

Y(in.) 

1 1  0.004 

- 
0,002 

urn 
+ 

0.00 
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

Y(in.) 

0.006 

0.004 - 
(,ii+ - 

0,002 

0.00 
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

Y(in.) 

FIGURE 24. For legend see facing page. 
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applied to the peaks of successive (.ii")*/U, profiles enables determination of -ai 
halfway between the profiles. 

Y(in.) 

0-5 

Y(in.) 

FIGURE 24. Distribution of ( z ) * / U a .  (a)  x / L  = 0.003, (b )  x/L = 0.015, (c) x / L  = 0.025, 
( d )  x / L  = 0.050, ( e )  x / L  = 0.10, (f) x / L  = 0.20. 
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6. Comparison of experimentally determined disturbance characteristic 
with the results of the linear theory 

In figure 25, the wavenumber, frequency, and spatial amplification rate are 
compared with the dominant disturbance characteristics predicted by the spatial 
theory for mode I disturbances. Qualitative agreement exists between the 
experimental measurements and the predictions of the linearized spatial stability 
theory, but quantitative differences are revealed in the wavenumber distribu- 
tions. The experimentally determined wavenumbers are smaller than those 
predicted by the inviscid theory. 
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smaller than those of the initial survey, while the qualitative agreement was 
duplicated. Note that the experimentally determined values are consistently 
lower than the results of the inviscid theory. 

The comparison for the disturbance frequency are presented in figure 25. 
Although a slight quantitative difference is again noted, with the experimental 
values being slightly smaller than the corresponding theoretical values, both 
qualitative and quantitative agreement between the two distributions is con- 
sidered very good. 

I I I 1 I 1 I I I 1 
0 -ai experimental 

rn Theoretical (ai = 0) 

I I I I 0 I I I I I 
0 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 

FIGURE 26. Comparison of experimental distributions of disturbance wavenumber, 
amplification rate, and angular frequency with the transformed results of the temporal 
theory. 

The quantitative discrepancies, which may be attributed to the inviscid 
assumption, may also be due to the neglected longitudinal gradients in the mean- 
wake profiles. As previously described, the instability in a free boundary layer 
for large Reynolds number is essentially inviscid where viscosity has only a 
damping influence. The stability analysis of Betchov & Szewczyk (1963), which 
was performed from the temporal viewpoint, showed that inviscid wavenumbers 
and amplification rates exceed their viscous counterparts and thereby cause 
quantitative discrepancies. On the other hand, since qualitative agreement. 
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between the results has already been demonstrated, the quantitative aspects of 
the comparison could probably be improved by incorporating the effects of the 
local longitudinal gradients in the mean-wake profile. 

A comparison of the experimental distribution of disturbance characteristics 
with the results of the temporal stability theory is shown in figure 26. The 
temporal amplification rate has been transformed to a spatial one using the group 
velocity. The wavenumber distributions indicate qualitative agreement between 
theoretical and experimental values and quantitative differences, with one 
exception at  wake station x / L  = 0.3, where the spatial and temporal analyses 
predict identical characteristics for the dominant eigenmode. 

The comparison of the longitudinal distributions for spatial amplification 
rates - ai and a,ci/Ugroup shows that a distinct qualitative difference exists 
between these two results in the near wake. Farther downstream the agreement 
between the two distributions corresponds to that observed in figure 25. 

The theoretical and experimental distributions for the disturbance angular 
frequency indicate qualitative agreement between the two results. Again with the 
exception of wake station x / L  = 0.3, the quantitative differences exceed those 
noted in figure 25. 

It seems reasonable to conclude that the predictions of the spatial theory agree 
with the experimentally determined disturbance quantities, and that this 
agreement is both qualitatively and quantitatively superior to the results of the 
temporal theory. Especially in the near wake, this agreement can be attributed 
to the large values of wi, which are found along the temporal stability line and 
occur in conjunction with the position of the saddle point in the w = w ( a )  and 
a = a(@) planes. When this saddle point lies between the ai = 0 and the wi = 0 
contours in the w = @(a) plane, the transformation between these contours via 
the group velocity is improper and leads to results that differ markedly from the 
results of the spatial theory. 

The analysis of successive downstream wake profiles shows that as the saddle 
point is displaced from the region between the ai = 0 and the wI = 0 contours, 
the accuracy of the group velocity transformation is improved. Finally, for wake 
station x / L  = 0.3, the results of the temporal and spatial viewpoints are identical. 

Gaster & Davey (1968) found that the temporal and spatial predictions are 
quite similar when based upon a single Gaussian wake profile comparable to that 
found in the present work at  x / L  = 0.15. They therefore concluded that either 
viewpoint appears capable of predicting the dominant disturbance characteris- 
tics. In light of the present work, this conclusion must be qualified: only profiles 
beyond wake station x lL  = 0.15 conform t o  such predictions. 

An attempt was made to measure the cross-stream distribution of Reynolds 
stress. However, the attempt was unsuccessful owing to the infinitesimal size of 
the velocity fluctuations in this very near wake region. 
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7. Discussion and conclusions 
The inviscid linearized stability theory has been used to analyse the growth of 

disturbances in the two-dimensional wake of a thin airfoil. The analyses have been 
made from temporal, spatial and combined viewpoints. 

In  the near wake region where the linearized analysis is applicable, the mean- 
velocity profile changes continuously at  successive locations. In  order to account 
for the changes, a quasi-uniform approximation is made. By this approxima- 
tion, successive wake profiles are considered individually and each is taken to be 
dependent solely upon the transverse co-ordinate. The collective results of the 
successive stability analyses are then compared with the corresponding dis- 
turbance characteristics determined experimentally. 

According to the theory, the disturbance predicted to have the maximum 
spatial amplification rate will dominate all other disturbances for each wake 
profile considered. With the stability analysis performed both from the temporal 
and the spatial viewpoints, the relationship between the two frames of reference 
has been shown. Because the system of unstable waves is shown to be a dispersive 
one, the conventional transformation scheme using the disturbance phase 
velocity is clearly incorrect. It is found, however, that there is a proper trans- 
formation that relates the two results. This is shown through the results of the 
combined stability analysis, which demonstrates that disturbance wave- 
numbers and frequencies predicted to be temporally unstable are also found to be 
spatially unstable. This transformation is found to be a complicated one in the 
very near wake because of the location of a saddle point in the eigenvalue planes. 
The analysis demonstrates that only for certain wake profiles is the transformation 
from the temporal to spatial framework adequately performed using the group 
velocity. Using the quasi-uniform approximation, however, the group velocity 
transformation applied to the dominant disturbance characteristics of the 
temporal theory renders eigenfunction distributions that are radically different 
from those of the spatial analysis in the very near wake. The group velocity 
transformation between the temporal and spatial viewpoints is thereby dis- 
carded. 

In  view of the complexity of the relationship between temporal and spatial 
viewpoints caused by the saddle-point position, it is concluded that the wake 
stability analysis must be done solely from the spatial viewpoint. This is verified 
by comparison of the results of the spatial analysis with experimental measure- 
ments of the characteristics of natural disturbances in the wake. 

Both symmetrical and asymmetrical disturbances are considered in the present 
theory. Mode I disturbances (symmetrical in v) effect an oscillation of the mean- 
wake centre-plane velocity that is transverse to this wake centre-plane. On the 
other hand, the mode I1 disturbances (asymmetrical in v), which experience a 
considerably reduced amplification compared to mode I disturbances and are 
thereby smothered in the combined superposition of disturbances, cause a 
longitudinal oscillation of the wake centre-plane velocity. 

The eigenvalue results of the spatial stability analysis show that the near 
wake region behaves like a highly tuned amplifier for mode I disturbances in a 
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narrow band of angular frequencies. Further, at the initial wake profile, the least 
damped waves having negative group velocities are found to have disturbances 
characteristics that coincide exactly with the most highly amplified waves having 
positive group velocities. With these least damped upstream-travelling groups of 
waves stimulating the most highly amplified downstream-moving groups of 
waves, the wake is found to be self-destabilizing. In  the downstream wake, the 
angular frequency of the most highly amplified eigenmode increases slightly. 
This shift in the angular frequency is accompanied by a reduction in the spatial 
amplification rate and a slight decrease in the wavenumber of the dominant 
disturbance. Averaging over the wake region investigated, the wave receiving 
maximum spatial amplification is the one for which w, = 0.550 and a, = 0.994. 

Experimental results are obtained for disturbances that develop na.turally in 
an actual wake whose successive wake profiles conform to those used in the 
linearized stability analyses. Comparison of the experimental disturbance 
characteristics with the predictions of the linearized spatial stability theory 
indicates that, while quantitative differences do occur, there is consistent quali- 
tative agreement throughout the wake region investigated. Specifically, mode I 
disturbances, which are those most highly amplified according to the linearized 
spatial analysis, are found t o  occur in the actual wake. Furthermore, whereas the 
experimentally determined disturbance characteristics exhibit qualitative 
agreement with the linearized spatial stability theory, they are also seen to differ 
qualitatively with the linearized temporal stability predictions when these are 
transformed to spatial values using the group velocity. It is thereby confirmed 
that the temporal viewpoint where spatial results are achieved by use of the 
group velocity transformation must be discarded. 

Since the consistent quantitative differences still remain between the experi- 
mental and theoretical disturbance characteristics, it is felt that future stability 
investigations include the effect of viscosity. In  addition, the neglect of the local 
longitudinal gradients in the mean-wake flow might be also responsible for the 
quantitative discrepancies between the experimental and theoretical disturbance 
characteristics. 

Naturally developing disturbances in the very unstable wake exhibit a certain 
natural drift or intermittency. To eliminate this natural intermittency, the 
previous experimental investigations of disturbance characteristics in free 
boundary-layer flow employed artificial excitations. As these investigations 
(Sato 1960; Sat0 & Kuriki 1961; Preymuth 1966) were conducted in air, the 
excitation was achieved by means of a loudspeaker that is tuned to  the natural 
disturbance frequency. The loudspeakers have been positioned upstream of, 
downstream of, and transverse t o  the various test sections for the purpose of 
locking the disturbance into its natural frequency. The locking-in phenomena 
eliminated the undesirable 10 yo drift observed in the natural disturbance 
frequencies. Although the levels of this artificial excitation are reportedly ‘small’, 
it is felt that such excitation should be carefully examined with regard t o  its 
probable unnatural effects. For instance, with the entire flow field oscillating 
with the loudspeaker frequency, it is plausible that the development of the 
disturbance and its inherent interaction with the mean flow could be radically 
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different from that observed in the natural flow. Consequently, the present 
experiment was conducted in water where, with the markedly reduced levels of 
natural drift and with considerable patience, naturally developing disturbance 
characteristics were measured. 

From the dominant disturbance characteristics obtained from the theory, the 
distributions of the perturbation velocity, vorticity and Reynolds stress were 
examined. For the mode I disturbances, which were found to be predominant in 
the real wake, there exists an oscillating component of perturbation vorticity 
near the wake centre-plane throughout the wake region examined. Moreover, two 
secondary peaks in the perturbation-vorticity distribution were noted. These 
secondary peaks were located symmetrically with respect t o  the wake centre- 
plane, just outside the two critical layers, and were in phase with each other but of 
opposite phase with the component lying on the wake centre-plane. In  light of the 
theoretical prediction that these two secondary components of vorticity ex- 
perience a spatial amplification twice that of the component on the wake centre- 
plane, a mechanism is suggested t o  describe the eventual development of the 
vortex street. This mechanism indicates that the superposition of the disturbance 
vorticity upon that of the mean flow gives rise t o  vorticity concentrations 
located off the wake centre-plane. As these concentrations have the proper relative 
rotational characteristics and the appropriate alternate spacing, the conclusion is 
drawn thaO the classic von Kkm&n vortex street formed behind streamlined 
bodies has its origins in the near wake region. Furthermore, the initial stages 
of development are predicted by the linear spatial stability theory. 

This mechanism is suggested in contrast to that of Sat0 I% Kuriki (1961). 
According to their interpretation, the vortex street is developed through the 
transverse displacements of a single row of vortices that originally lie along the 
wake centre-plane. As these vortices become strengthened in their downstream 
development, they are displaced alternately in transverse directions. According 
to their induced velocity fields, they finally stabilize in the configuration known 
as the classic vortex street. It appears that they mistook the appearance of the 
second harmonics as a manifestation of the vorticity concentration of the centre- 
plane. Nevertheless, further experimental investigations of the non-linear 
development are highly desirable. 

The Reynolds stress distributions for the most highly amplified spatial waves 
indicate that at  the most upstream wake stations there is a transfer of energy 
from the disturbance motion to the mean motion. This transfer takes place only 
near the wake centre-plane and persists through wake station x/L = 0.05, 
thereby tending to stabilize the disturbance motion in this region. Beyond wake 
station xlL = 0.05, the Reynolds stress distributions indicate that throughout 
the cross-stream direction, energy is transferred t o  the disturbance motion from 
the mean flow. 

Qualitative differences occur between the Reynolds stress distributions of the 
spatial and the temporal eigenmodes. Consequently, these two viewpoints are 
not equally capable of describing the wake instability, as postulated by Gaster 
(1965). Gaster’s conclusion was based only upon spatial and temporal analyses 
of the single Gaussian wake profile used by Sat0 & Kuriki (1961), for which it just 
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happens that the two viewpoints predict almost identical characteristics for the 
dominant disturbance. 

Therefore, it is concluded that stability analyses in highly unstable free 
boundary-layer flows should be done spatially. In  addition, the longitudinal 
variation of these continuously developing mean-velocity profiles has to be 
taken into account in light of the significant effects attributed to the saddle-point 
behaviour in the eigenvalue planes. 
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